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Instability to Nonlinear Vector Differential Equations of Fourth 
Order with Constant Delay

(Ketakstabilan Persamaan Pembeza Vektor Tak Linear 
Keempat dengan Tundaan Malar)

Cemİl Tunç*

ABSTRACT

We consider a vector nonlinear differential equation of fourth order with a constant delay. We establish new sufficient 
conditions, which guarantee the instability of the zero solution of that equation. An example is given to illustrate the 
theoretical analysis made in this paper. 
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Abstrak

Kami telah pertimbangkan persamaan pembeza vektor taklinear tertib keempat dengan tundaan malar. Kami tunjukkan 
keadaan mencukupi yang baru yang menjamin ketakstabilan penyelesaian sifar persamaan tersebut. Satu contoh diberikan 
untuk menunjukkan analisis teori yang dilakukan dalam kertas ini. 

Kata kunci: Kestabilan; tundaan; persamaan pembeza vektor; tertib keempat

 INTRODUCTION 

Sun and Hou (1999) considered the scalar nonlinear 
differential equation of the fourth order:

	 x(4) + a1  + h(ẋ)ẍ + g(x)ẋ + f(x) = 0,	 (1) 

where a1 is a constant. The authors established some 
sufficient conditions, which guarantee the instability of 
the solution x = 0 of (1). 
	 Later, Tunç (2011c) considered (1) in its vector form 
as follows: 

	 x(4) + a  + h(ẋ)ẍ + g(x)ẋ + f(x) = 0,	 (2)

	 The author presented a result on the instability of the 
zero solution of (2). 
	 In this paper, instead of (2), we considered its delay 
form as follows: 

	 x(4) + a  + h(ẋ)ẍ + g(x)ẋ + f(x(t –τ) = 0, 	 (3)

where X ∈ ℜn, τ > 0 is the constant deviating argument, 
A is a constant n × n-symmetric matrix, H and G are 
continuous n × n-symmetric matrix functions for the 
arguments displayed explicitly, F: ℜn→ ℜn, F (0) = 0 and 
F is continuous for all X ∈ ℜn. It is assumed the existence 
and the uniqueness of the solutions of (1).
	 Equation (3) is the vector version for systems of real 
fourth order nonlinear differential equations of the form:

	
		  +fi (x1(t – τ), x2(t – τ), …, xn(t – τ)) = 0, 

		  (i = 1, 2, …, n).

	 Instead of (3), we considered its equivalent differential 
system:

	 Ẋ = Y, Ẏ = Z, Ż = W,

	 Ẇ = –AW–H(Y)Z–G(X)Y–F(X) + (X(s))Y(s)ds, 
	 (4)

which was obtained by setting Ẋ = Y, Ẍ = Z,  = W from 
(3). 
	 Let JF(X) and  J(H(T)Y⎪Y) denote the linear operators 
from F(X) and H(Y) to 

	

and
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where (x1,…, xn), (y1,…,yn), (f1,…, fn) and (hik) are 
components of X, Y, F and H, respectively. In what follows, 
it was assumed that JF(X) and  exist and are symmetric 
and continuous.
	 Meanwhile, it should be noted that in the past few 
decades, the instability of the solutions of various scalar 
differential equations of fourth order without and with delay 
and vector differential equations of fourth order without 
delay was discussed in the literature. For a comprehensive 
treatment of the subject, we refer the readers to the 
papers of Ezeilo (1978, 1979, 2000); Sadek (2003); Tunç 
(2004, 2006, 2009, 2010, 2011a, 2011b, 2011c) and the 
references cited in these sources. However, to the best 
of our knowledge from the literature, the instability of 
solutions for the vector differential equations of the fourth 
order with a deviating argument has not been discussed 
in the literature. This paper is the first attempt and work 
on the topic for the vector differential equations of fourth 
order with a deviating argument. The motivation to produce 
this paper comes from the above papers done on scalar 
differential without and with delay and vector differential 
equations without delay. Our aim was to achieve the results 
established in Sun and Hou (1999) and Tunç (2011c) to (3) 
with a deviating argument. By this work, we improved the 
results of Sun and Hou (1999) and Tunç (2011c) to a vector 
differential equation of fourth order with delay. Based on 
Krasovskii’s criterions (Krasovskii 1955), we proved our 
main result and an example is also provided to illustrate 
the feasibility of the proposed result. The result is new and 
different from that in the papers mentioned above.
	 The symbol 〈X,Y〉 correspondings to any pair X, Y in 

ℜn stands for the usual scalar product , that is, 〈X,Y〉 

= ; thus 〈X,Y〉=⎪⎜X⎪⎜2, and λi(Ω), (i = 1,2,…,n),  are 

the eigenvalues of the real symmetric n × n- matrix Ω. The 
matrix Ω is said to be negative-definite, when 〈ΩX, Y〉≤0  
for all nonzero X in ℜn.

MAIN RESULT

Before the introduction of the main result, we need the 
following results.

Lemma 1 (Bellman 1997). Let A be a real symmetric 
n × n-matrix and 

	 a´ ≥ λi(A) ≥ a > 0, (i = 1,2,…,n), 
 
where a  ́and a are constants.

Then á  ≥ ≥ a2 ,  and

	 á2 ≥ ≥ a2 .

	 In the following theorem, we gave a basic idea of 
the method about the instability of solutions of ordinary 
differential equations. The following theorem is due to 
Četaev’s, (LaSalle & Lefschetz 1961).

	 Theorem 1 (Instability Theorem of Četaev’s). Let Ω be 
a neighborhood of the origin. Let there be given a function 
V(x) and region Ω1 in Ω with the following properties:
(i)	 V(x) has continuous first partial derivatives in Ω1. 
(ii)	 V(x) and  are positive in Ω1. 
(iii)	At the boundary points of  Ω1 inside Ω, V(x) = 0. 
(iv)	The origin is a boundary point of Ω1. 

Under these conditions the origin is unstable.

Let  r ≥ 0 be given and let  C = C([–r,0], ℜn) with

	  

For H > 0 define CH ⊂ C by:

	 CH = {φ∈C:  < H}. 

	 If x:[–r, A) →ℜn is continuous,  0 < A ≤ ∞, then, for 
each t in [0, A), xt in C is defined by: 

	 xt(s) = x(t + s), –r ≤ s ≤ 0, t ≥ 0.
 
	 Let G be an open subset of C and consider the general 
autonomous delay differential system with finite delay: 

	 ẋ = F(xt), xt = x(t + θ), –r ≤ θ ≤ 0, t ≥ 0,
   
where  F:G → ℜn is a continuous and maps closed and 
bounded sets into bounded sets. It follows from these 
conditions on F that each initial value problem: 

	 ẋ = F(xt), x0 = φ ∈ G,
 
has a unique solution defined on some interval [0, A), 0 
< A ≤ ∞. This solution will be denoted by x(φ)(.) so that 
x0(φ) = φ.  

Definition. The zero solution, x = 0, of ẋ = F(xt) is stable 
if for each ε > 0 there exists δ = δ(ε) > 0 such that <δ  
implies that ⎪x(φ)(t)⎪<ε for all t ≥ 0. The zero solution is 
said to be unstable if it is not stable. 

The main result of this paper is the following theorem.

Theorem 2. In addition to the basic assumptions imposed 
on A, H, G and F that appear in (3), we assume that there 
exist constants a1(< 0), a3(> 0) and  a4(> 0) such that the 
following conditions hold:

	 λi(A) ≤ a1, F(0) =	0, F(X) ≠ 0, (X ≠ 0), 
		  0 < λi(JF(X)) ≤ a4,

and  λi(G(X)) ≥ a3 for all X∈ℜn.

	 If τ <  then the solution X = 0 of (1) is unstable 

for arbitrary H(Y). 
	 Remark. It should be noted that there is no sign of 
restriction on eigenvalues of the matrix H in the system 
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(4) and it is clear that our assumptions have a very simple 
form and the applicability of them can be easily verified. 
	 Proof. We define a Lyapunov-Krasovskii functional 
V = V(Xt, Yt, Zt, Wt): 

	

It is clear that V(0, 0, 0, 0) = 0 and

	 V(0, 0, ε, 0) =  

for all arbitrary ε ≠ 0, ε ∈ℜn, which verifies the property 
(κ1) of Krasovskii (1955).

Let (X,Y, Z, W) = (X(t), Y(t), Z(t), W(t)), be an arbitrary 
solution of (4). By the time derivative of V  along system 
(4), we get:

	

	

It can be easily seen that: 

	 dσ = 〈F(X),Y〉,

	 dσ = 〈H(Y)Z,Y〉,

	

	

and

	

	

so that 

	
Let 

	 λ = 

Hence

	

	 If  then we have for some positive constant 

k that:
	
 
	
which verifies the property (K2) of Krasovskii (1955).

On the other hand, it follows that:

	 V(Xt,Yt,Zt,Wt) =	0 ⇔Y = Ẋ, Z = Ẏ = 0, W = Ż = 0  

for all  t ≥ 0. 

Hence  X = ξ, Y = Z = W = 0.
 
	 Substituting foregoing estimates in the system (4), 
we get that F(ξ) = 0, which necessarily implies that ξ = 0  
since F(0) = 0.  Thus, we have 

	 X = Y = Z = W = 0 for all t ≥ 0.
 
Hence, the property (K3) of Krasovskii (1955) holds. 

This completes proof of Theorem 2.
	 Example. In a special case of (3), for n = 2, we 
choose, 

	 A =  
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	 G(X) = 

and

	 F(X(t – τ)) = 

Then, by an easy calculation, we obtain:

	 λ1(A) = -4,  λ2(A) = -8,

	 λ1(G) = 4 + 
 
and 

	 λ2(G) = 4 + 

	 JF(X) = 

so that:

	 λi(A) ≤ –4 = a1,

	 λi(G) ≥ 4 = a3 > 0, 

and  0 < λi(JH(X)) ≤ 5 = a4,   (i = 1,2).
 
Thus, all the conditions of Theorem 2 hold.

CONCLUSION 

A nonlinear vector differential equation of the fourth 
order with constant deviating argument is considered. 
Based on the Krasovskii properties, the instability of the 
zero solution of the equation is discussed. In proving our 
result, we employ the Lyapunov-Krasovskii functional 
approach by defining a Lyapunov- Krasovskii functional. 
An example was given to illustrate the main result and 
concepts. The obtained result contributes and complements 
to previously known results on the qualitative behaviors 
of solutions in the literature.
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